Wednesday, February 2, 2011

Sumber-sumber Arus Listrik Searah (DC)


Saya mau share lagi nih, tentang karya tulis fisika kelompok saya (kelas 9). Semoga bermanfaat!!


Pendahuluan

Jika benda A yang mempunyai lebih banyak muatan positif dihubungkan dengan benda B yang mempunyai lebih sedikit muatan positif, muatan positif benda A akan mengalir ke benda B sedemikian rupa sehingga jumlah muatan kedua benda menjadi sama (seimbang). Aliran (gerakan) muatan tersebut disebabkan muatan-muatan positif pada benda A mengalami gaya tolak yang lebih besar dari pada muatan-muatan positif pada benda B. Hal ini dikatakan potensial listrik (selanjutnya ditulis potensial saja) benda A lebih besar dari pada benda B. Aliran muatan positif tersebut didefinisikan sebagai arus listrik. Jadi. arus listrik mengalir dari potensial tinggi ke potensial rendah. Pada perkembangan selanjutnya, ditemukan bahwa muatan listrik yang dapat mengalir bukan muatan positif. Melainkan muatan negatif yang disebut elektron.

Elektron ditemukan oleh J.J. Thomson (1856-1940). Meskipun demikian, anggapan bahwa arus listrik ditimbulkan oleh aliran muatan positif tidak menjadi masalah karena aliran elektron menimbulkan arus listrik. Arah arus listrik tersebut berlawanan dengan arah aliran elektron. sedangkan besarnya sebanding dengan besar aliran elektron. Keberadaan arus listrik dapat diketahui melalui alat ukur listrik atau alat listrik lainnya. Alat listrik yang dapat digunakan antara lain lampu pijar atau bohlam. Penghantar yang dapat dilalui arus listrik merupakan suatu rangkaian tertutup. Artinya, ujung penghantar harus dihubungkan dengan kutub positif sumber tegangan dan ujung penghantar yang lain harus dihubungkan dengan kutub negatif sumber tegangan. Jika rangkaian terbuka (terputus), arus listrik tidak dapat mengalir melalui rangkaian itu. Jadi, arus listrik hanya dapat mengalir dalam rangkaian tertutup. Selanjutnya, jika baterai yang digunakan dua buah, nyala lampu lebih terang. Hal itu disebabkan arus listrik yang melalui lampu lebih besar. Karena terbukti bahwa besar arus listrik yang mengalir (selanjutnya disebut kuat arus listrik) sebanding dengan banyaknya elektron yang mengalir. Kuat arus listrik dapat didefinisikan sebagai kecepatan aliran muatan listrik. Dengan kata lain, kuat arus listrik adalah jumlah muatan listrik yang mengalir melalui penampang suatu penghantar tiap sekon.

Sesuatu yang menghasilkan arus listrik disebut dengan sumber arus listrik. Sumber arus listrik dibagi menjadi dua. Yaitu sumber arus searah/DC (Direct Curent) dan sumber arus bolak-balik/AC (Alternating Curent). Sumber arus DC dibagi lagi menjadi dua. Yaitu elemen primer dan elemen sekunder.

Pada setiap elemen, terdapat tiga bagian penting. Yaitu; elektrode positif (anode), elektode negatif (katode), dan elektrolit

I. Elemen primer

Elemen primer adalah elemen elektrokimia yang bahan-bahan pereaksinya tidak dapat diperbaharui lagi sehingga tidak mampu menimbulkan reaksi kimia lagi. Istilah gampangnya, elemen primer adalah elemen yang muatan listrik di dalamnya tidak dapat diisi ulang kembali. Artinya, setelah muatannya habis elemen primer tidak dapat dipakai kembali. Contoh elemen primer dalam kehidupan sehari-hari diantaranya; elemen Volta, elemen kering (baterai), dan baterai alkalin.

A. Elemen Volta

Alessandro Volta (1745 – 1827) menemukan bahwa pasangan logam tertentu dapat membangkitkan GGL, gaya gerak listrik ini menyebabkan arus listrik mengalir dalam suatu rangkaian. Pasangan logam tersebut adalah Cu (tembaga) dan Zn (seng). Sumber tegangan pertama yang dapat mengalirkan arus listrik cukup besar adalah elemen Volta.

Adanya perbedaan potensial logam dimanfaatkan untuk membuat sel Volta. Elemen Volta tersusun atas pelat tembaga sebagai elektroda positif atau kutub positif, pelat seng sebagai elektroda negatif atau kutub negatif dan larutan asam sulfat sebagai larutan elektrolit, yaitu larutan yang dapat menghantarkan arus Iistrik. Pelat tembaga mempunyai potensial lebih tinggi dari pada pelat seng. Hal itu memungkinkan terjadi aliran elektron dari pelat seng ke pelat tembaga atau aliran arus listrik dari pelat tembaga ke pelat seng Dalam larutan elektrolit (asam sulfat), pelat seng bereaksi dengan larutan elektrolit, sedangkan pelat tembaga tidak. Reaksi tersebut menghasilkan gas hidrogen dan energi. Energi inilah vang digunakan elektron untuk bergerak (mengalir) dari pelat seng ke pelat tembaga. Karena ada aliran elektron, terjadi aliran arus listrik dari tembaga ke seng (pada rangkaian di luar larutan). Jadi, arus listrik terjadi karena adanya reaksi kimia. Dengan kata lain, dalam elemen Volta terjadi perubahan energi kimia menjadi energi listrik.

Jika pada penghantar (kabel) yang menghubungkan antara pelat seng dan tembaga dipasang sebuah lampu, lampu tersebut akan menyala. Namun, nyala lampu tersebut tidak lama kemudian akan menjadi redup dan akhirnya padam. Hal itu terjadi karena pada pelat tembaga yang tercelup dalam larutan tertutupi oleh gelembung-gelembung gas hidrogen. Gelembung-gelembung gas hidrogen inilah yang menghalangi aliran arus listrik sehingga Iampu menjadi padam. Peristiwa menempelnya gelembung-gelembung gas hidrogen pada pelat tembaga tersebut disebut dengan istilah polarisasi.

B. Baterai atau Elemen Kering


Baterai adalah alat listrik-kimiawi yang menyimpan energi dan mengeluarkan tenaganya dalam bentuk listrik. Sebuah baterai biasanya terdiri dari tiga komponen penting, yaitu:

  1. Batang karbon sebagai anoda (kutub positif baterai)
  2. Seng (Zn) sebagai katoda (kutub negatif baterai)
  3. pasta amonium klorida (salmiak) sebagai elektrolit (penghantar)

Baterai biasanya digunakan pada lampu senter, jam dinding, dan mainan elektronik Baterai tersusun atas batang karbon sebagai elektrode positif atau kutub positif, pembungkus batang karbon vang terbuat dari seng sebagai elektrode negatif atau kutub negatif, larutan amonium klorida sebagai larutan elektrolit, dan campuran mangan dioksida dengan karbon sebagai depolarisator, yaitu pelindung larutan elektrolit. Elemen kering pertama kali dibuat oleh Leclance. Oleh karena itu, elemen kering juga sering disebut elemen Leclance.

Ketika baterai dipakai, terjadi reaksi antara elektrode positif dan elektrode negatif. Di elektrode negatif terjadi pelepasan elektron oleh seng. Akibatnya, terbentuk ion seng yang bermuatan positif. Elektron yang dilepaskan tersebut ditangkap oleh elektrode positif. Dalam hal ini, dilakukan oleh mangan dioksida (batu kawi) dan larutan amonium klorida. Peristiwa tersebut terjadi secara terus-menerus. Akibatnya, pada suatu saat perbedaan potensial kedua elektrode sama dengan nol. Pada keadaan seperti inilah baterai dikatakan mati (baterai tidak dapat dipakai lagi). Selama digunakan, seng dalam bereaksi dengan amonium klorida dan batu kawi sehingga terbentuk seng klorida, gas hidrogen, amonia, dan mangan trioksida. Itulah sebabnya, jumlah amonium klorida berangsur-angsur berkurang. Sebagaimana elemen Volta, baterai tidak dapat dimuati lagi (diisi atau disetrum) jika muatannya habis. Elemen seperti ini dinamakan elemen primer. Besar beda potensial baterai di pasaran sekitar 1.5 V.

Kerja sel kering/baterai :

1. Ketika atom seng di pelat seng menjadi ion, atom itu melepaskan elektron

2. Elektron yang dilepaskan berjalan lewat kawat ke elektrode positif

3. Elektron dan ion hidrogen berpadu menjadi gelembung gas hidrogen

4. Gas hidrogen dan oksigen dalam superoksid mangan berpadu menjadi air

C. Baterai Alkalin

Baterai alkalin hampir sama dengan baterai karbon-seng. Anoda dan katodanya sama dengan baterai karbon-seng. Perbedaannya terletak pada jenis elektrolit yang digunakan. Pada baterai alkalin, elektrolit yang digunakan adalah KOH (Kalium Hidroksida) dan NaOH (Natrium Dioksida). Sehingga reaksinya berlangsung dalam suasana basa.

Potensial sel yang dihasilkan baterai alkalin ialah 1,54 Volt. Arus dan tegangan pada baterai alkali lebih stabil dibanding dengan baterai karbon-seng. Salah satu ukuran pada baterai alkalin yaitu AAA. Baterai alkalin ukuran ini memiliki tegangan 1,5 Volt dan kuat arus dari 900 sampai 1.155 Ampere.

II. Elemen sekunder

Elemen sekunder adalah elemen elektrokimia yang bahan-bahan pereaksinya dapat diperbaharui kembali setelah reaksi tidak terjadi lagi. Istilah gampangnya, elemen sekunder adalah elemen yang muatan listrik di dalamnya dapat diisi ulang kembali (rechargable). Artinya, setelah muatannya habis elemen sekunder masih bisa terus dipakai setelah muatannya diiisi ulang. Pengisian ulang tersebut sering disebut charge. Contoh elemen sekunder dalam kehidupan kita sehari-hari diantaranya; aki (akumulator), sel Nicad

A. Aki (Akumulator)

Akumulator (accu, aki) adalah sebuah alat yang dapat menyimpan energi (umumnya energi listrik) dalam bentuk energi kimia. Contoh-contoh akumulator adalah baterai dan kapasitor. Aki merupakan sel yang banyak kita jumpai karena banyak digunakan pada sepeda motor maupun mobil.

Aki termasuk elemen sekunder. Artinya, aki dapat diisi kembali setelah muatannya habis. Agar dapat dipakai lagi. Kedua elektrode yang sudah menjadi timbel sulfat harus dikembalikan lagi seperti semula, yaitu menjadi timbel sebagai elektrode negatif dan timbel dioksida sebagai elektrode positif. Hal itu dapat dilakukan dengan cara kutub positif aki dihubungkan dengan kutub positif sumber arus DC dan kutub negatif aki dihubungkan dengan kutub negatif sumber arus DC. Hubungan seperti ini menyebabkan arus elektron sumber arus DC menekan (berlawanan dengan) arus elektron aki Akibatnya, elektron-elektron aki tertekan kembali masuk ke elemen. Oleh karena itu, beda potensial sumber arus DC harus lebih besar dari pada beda potensial aki yang diisi. Reaksi kimia yang terjadi saat pengisian aki merupakan kebalikan dari reaksi yang terjadi
saat pemakaian aki.

Di dalam standar internasional setiap satu cell akumulator memiliki tegangan sebesar 2 volt. sehingga aki 12 volt, memiliki 6 cell sedangkan aki 24 volt memiliki 12 cell.

- Pemakaian aki

Pada pemakaian aki terjadi proses perubahan energi kimia menjadi energi listrik. Pemakaian aki di antaranya untuk menyalakan tape recorder, radio, TV. Pada saat aki digunakan maka terjadi proses kimia sehingga aki dapat mengalirkan arus listrik, proses kimia yang terjadi adalah lapisan pada katoda dan anoda sedikit demi sedikit berubah menjadi timbal oksida (PbO). Sehingga potensial kedua kutub menjadi sama, dan arus listrik tidak dapat mengalir, dalam hal ini aki dikatakan kosong. Kemampuan aki untuk mengalirkan arus listrik dapat dipulihkan kembali dengan jalan mengalirkan arus listrik searah dari sumber arus yang lain melalui kedua kutubnya.

- Pengisian aki

Pada proses pengisian aki ini terjadi perubahan energi listrik menjadi energi kimia. Karena ada aliran arus listrik dari luar, maka kedua kutub anoda dan katoda dari PbO berubah menjadi PbO2 dan Pb. Peristiwa mengalirkan arus listrik ke dalam aki ini disebut mengisi atau dalam bahasa sehari-hari disebut menyeterum aki.

B. Sel Nicad

Sel Nicad merupakan sel kering yang dapat diisi kembali (rechargable). Nama sel Nicad berasal dari dua unsur kimia. Yaitu Nikel (Ni) dan Cadmium (Cd) Anodenya terbuat dari Cadmium dan katodenya berupa Nikel Hidroksida. Diantara kedua elektrode tersebut terdapat pasta Kalium Hidroksida yang menjadi elektrolit dari sel Nicad. Beda potensial yang dihasilkan oleh sebuah sel Nicad adalah sekitar 1,2 V.

Harga sel Nicad lebih mahal daripada baterai biasa. Namun, sel Nicad dapat diisi ulang kembali lebih dari 100 kali

III. Elemen/Sel Tambahan

Saat ini, ada beberapa elemen/sel yang terus dikembangkan untuk menghasilkan sel yang lebih bertenaga, berukuran kecil, dan ringan; tetapi bersahabat dengan lingkungan.

A. Sel Bahan Bakar (Fuel Cell)

Sel bahan bakar (bahasa Inggris: fuel cell) adalah sebuah alat elektrokimia yang mirip dengan baterai, tetapi berbeda karena dia dirancang untuk dapat diisi terus reaktannya yang terkonsumsi; yaitu dia memproduksi listrik dari penyediaan bahan bakar hidrogen dan oksigen dari luar. Hal ini berbeda dengan energi internal dari baterai. Sebagai tambahan, elektroda dalam baterai beraksi dan berganti pada saat baterai diisi atau dibuang energinya, sedangkan elektroda sel bahan bakar adalah katalitik dan relatif stabil.

Reaktan yang biasanya digunakan dalam sebuah sel bahan bakar adalah hidrogen di sisi anode dan oksigen di sisi kathoda (sebuah sel hidrogen). Biasanya, aliran reaktan mengalir masuk dan produk dari reaktan mengalir keluar. Sehingga operasi jangka panjang dapat terus menerus dilakukan selam aliran tersebut dapat dijaga kelangsungannya.

Sel bahan bakar seringkali dianggap sangat menarik dalam aplikasi modern karena efisiensi tinggi dan penggunaan bebas-emisi, berlawanan dengan bahan bakar umum seperti methane atau gas alam yang menghasilkan karbon dioksida. Satu-satunya hasil produk dari bahan bakar yang beroperasi menggunakan hidrogen murni adalah uap air. Namun ada kekhawatiran dalam proses pembuatan hidrogen yang menggunakan banyak energi. Memproduksi hidrogen membutuhkan "carrier" hidrogen (Biasanya bahan bakar fosil, meskipun air dapat dijadikan alternatif), dan juga listrik, yang diproduksi oleh bahan bakar konvensional. Meskipun sumber energi alternatif seperti energi angin dan surya dapat juga digunakan, namun sekarang ini mereka sangat mahal.

Dalam salah satu contoh sel bahan bakar, yaitu sel bahan bakar membran penukar proton hidrogen/oksigen, suatu membran polimer penghantar-proton memisahkan bagian anoda dan katoda. Pada bagian anoda, hidrogen berdifusi ke katalis anoda.

B. Sel Surya

Listrik tenaga surya diperoleh dengan melalui sistem photo-voltaic. Photo-voltaic terdiri dari photo dan voltaic. Photo berasal dari kata Yunani phos yang berarti cahaya. Sedangkan voltaic diambil dari nama Alessandro Volta (1745 - 1827), seorang pelopor dalam pengkajian mengenai listrik. Sehingga photo-voltaic dapat berarti listrik-cahaya. Belakangan ini, photo-voltaic lebih sering disebut solar cell atau sel surya, karena cahaya yang dijadikan energi listrik adalah sinar matahari.

Bila sel surya itu dikenakan pada sinar matahari, maka timbul yang dinamakan elektron dan hole. Elektron-elektron dan hole-hole yang timbul di sekitar pn junction bergerak berturut-turut ke arah lapisan n dan ke arah lapisan p. Sehingga pada saat elektron-elektron dan hole-hole itu melintasi pn junction, timbul beda potensial pada kedua ujung sel surya. Jika pada kedua ujung sel surya diberi beban maka timbul arus listrik yang mengalir melalui beban.

Sebuah sel surya tunggal dapat menghasilkan listrik searah 3 volt dan 3 ampere. Sel-sel ini dapat dibuat dalam berbagai ukuran yang diinginkan dengan jalan menghubungkan seri sel-sel yang sama untuk membentuk modul sel surya dengan keluaran yang diperlukan. Sel-sel itu dikemas sedemikian rupa dengan bahan khusus sehingga modul dapat bertahan dalam kondisi yang terjelek tanpa kehilangan efisiensinya.

Sistem sel surya pada mulanya dikembangkan untuk penggunaan pada satelit di ruang angkasa. Perawatan atau perbaikaan di ruang angkasa itu pekerjaan sangat mahal, untuk tidak mengatakan tidak mungkin. Oleh karena itu, semua satelit yang mengelilingi bumi mendapatkan energi listriknya dari sistem sel surya. Sistem sel surya dapat bekerja dengan andal untuk jangka waktu yang lama dan hampir tanpa memerlukan perawatan. Sehingga sel surya dapat dikatakan mempunyai keandalan yang tinggi.

Sistem sel surya menggunakan energi sinar matahari untuk menghasilkan listrik, tanpa memerlukan bahan bakar. Tanpa ada bagian yang berputar, maka sistem sel surya hanya memerlukan sedikit perawatan. Sehingga sistem sel surya itu boleh dibilang cost effective dan cocok untuk stasiun telekomunikasi daerah terpencil, pelampung navigasi di tengah laut, alat pemantau permukaan air bendungan, atau untuk penerangan rumah yang jauh dari jangkauan jaringan PLN. Biaya operasional sistem sel surya jelas rendah.

Karena tidak memerlukan bahan bakar dan tidak ada bagian yang berputar, sistem sel surya itu bersih dan tidak bersuara. Ramah lingkungan ini sangat penting, mengingat pilihan untuk mendapatkan energi dan penerangan itu biasanya dari generator diesel atau lampu minyak tanah. Kalau kita semakin prihatin dengan gas rumah kaca (greenhouse gas) dan pengaruhnya yang merusak terhadap ekosistem planet kita ini, maka energi bersih yang diproleh dari sistem sel surya merupakan pilihan yang tepat sekali.

Sistem sel surya dapat dibangun dalam berbagai ukuran atas dasar kebutuhan energinya. Selanjutnya sistem sel surya itu dapat dikembangkan dan ditingkatkan dengan mudah. Misalnya, bila kebutuhan energi semakin meningkat, cukup dengan jalan menambahkan modul sel surya, tentunya jika sumber dananya memungkinkan. Selain itu, sistem sel surya gampang untuk dipindahkan bila dipandang perlu. Misalnya untuk menggerakkan pompa untuk pengairan sawah.

Sistem sel surya dapat dirancang untuk penggunaan di ruang angkasa, atau penggunaan di permukaan bumi. Sistem sel surya untuk di permukaan bumi terdiri dari modul sel surya, kontroler pengisian (charge controller), dan aki (batere) yang maintenance free. Modul sel surya yang digunakan dapat diperoleh dalam berbagai ukuran dan kapasitas. Yang sering digunakan adalah modul sel surya 20 watt atau 30 watt. Modul sel surya menghasilkan daya yang proporsional dengan luas permukaan modul yang terkena sinar matahari. Dalam penggunaan skala agak besar, aki (baterai) dalam sistem sel surya kadang-kadang dihubungkan dengan sebuah inverter, untuk mengkonversi listrik DC menjadi listrik AC.

Sistem sel surya biasanya ditempatkan di dekat yang memerlukan listrik. Sehingga untuk tempat-tempat yang terpencil hanya memerlukan kabel yang lebih pendek dibandingkan jika menarik kabel dari jaringan PLN misalnya. Selain itu, jelas sistem sel surya menjadi murah karena tidak memerlukan transform


(F.T.)

No comments: